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Abstract
We investigate the distribution of nodes at and beyond the classical turning
point of idealized chaotic quantum eigenfunctions. A formula for the density
of nodes is derived in the semiclassical limit, and the rate at which this density
falls off as one moves into the forbidden region is also studied. The discussion is
supported by numerical results. Corrections to the Bessel function correlation
in the classically allowed region are necessary for finite h̄ and are given here.

PACS numbers: 03.65.−w, 03.65.Sq, 05.45.Mt

1. Introduction

The nature of eigenfunctions of classically chaotic systems has been of considerable interest
over the years [1–3]. The statistics, correlations, amplitude and nodal structure of such
eigenfunctions have come under study. Random matrix theory and Berry’s conjecture suggest
that, locally, eigenfunctions of chaotic systems should be random superpositions of plane
waves of fixed wavevector magnitude. This implies Gaussian statistics and Bessel function
autocorrelations of the resulting random waves.

The nodal structure is of more than academic interest. In many quantum systems in more
than one dimension, the presence or absence of nodes of the wavefunction near the classical
turning point can control tunnelling rates. For instance, consider tunnelling out of a metastable
well in two dimensions [4, 5]. If the wavefunction should have a node at the turning point near
the place where the barrier is smallest, the amplitude for tunnelling out will be significantly
suppressed relative to the typical case where there is no node, as long as h̄ is not too small. In
fact, tunnelling takes place only within a region of order

√
h̄ of the optimal tunnelling path,

where the action for crossing the barrier is smallest, and, as will follow from results below, the
number of wavelengths within that region scales as only h̄−1/6; thus, for values of h̄ that one can
hope to achieve in numerical experiments the presence or absence of an additional node at the
turning point can be important in determining the overall tunnelling rate. Physical processes
in which the density of nodes near the turning point is important for the decay rate include for
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example photodissociation of molecules and nuclear fission following on absorption of a slow
neutron.

The structure of chaotic wavefunctions in the allowed region has also been studied in
recent years for disordered systems, where one considers a quantum billiard in the ballistic
regime with diffusive surface scattering (see, for instance, the review paper of Mirlin [6]). In
addition, Bogomolny and Schmit [7] have obtained analytical results on the distribution of
nodal domains for Gaussian random functions.

The structure of chaotic wavefunctions far into the classically allowed region is well
understood. As suggested by Berry [8], the wavefunction may be well represented locally
by a random superposition of plane waves with fixed wavenumber k = (1/h̄)

√
E − V (x, y),

assuming that (x, y) does not lie near any short periodic orbits allowing neglect of scarring
effects [1]. In such a case, the two-point correlation function 〈ψ(x)ψ̄(x + r)〉 is given by
J0(kr) (see [9]), from which we deduce that the spacing between nodes at (x, y) is of order
1/k. The generalization to higher dimensions is given in [10]. However, as the turning point is
approached, the wavelength diverges and the semiclassical limit breaks down. Nevertheless,
as numerical calculations show, there is a finite density of nodes at the turning point which
persists, moreover, at least some distance into the forbidden region. This paper provides
a theory of the local nodal density in and near the classically forbidden regions, including
corrections to local Bessel function correlations in the classically allowed regime.

At first thought, the issue of nodal structure near the turning point surface (i.e. the surface
V = E of zero kinetic energy) and beyond, into the classically forbidden region, seems off
limits to semiclassical analysis. However, it is well known that WKB methods are valid deep
into forbidden regions, and break down only near singularities in the classical probability
densities (e.g. turning points). Even there, connection formulae exist to uniformize the
semiclassical methods. Thus, the important question of nodal structure might be addressed
after all, at and beyond the V = E equipotential.

One might imagine that Berry’s idea of random superpositions of plane waves simply
extends to classically forbidden regions, after replacing sinusoidal waves with appropriate
evanescent waves. Consider the kinetic energy T, for two dimensions,

T = p2
x

/
2 + p2

y

/
2. (1)

Even in classically allowed regions, where T is positive, one may choose for example p2
x to

be negative, making up the difference with p2
y . If this is done, the wave is evanescent in x

and oscillating faster than the nominal wavelength in y. This is exactly the kind of behaviour
we require near diffractive structures whose scale is less than a wavelength. Since evanescent
waves blow up in some directions, it is not possible to use them in open systems with no nearby
boundaries. But, if boundaries are present, such evanescent waves should (or could) play a role.
Complicating this issue is the fact that such evanescent waves can in fact be represented with
somewhat pathological linear combinations of travelling waves, as discussed by Berry [11].

In the forbidden regime, the waves must be evanescent in some direction, since T is
negative. One thought towards extending chaotic eigenstates into the forbidden region might
be to generalize the idea of random superposition of plane waves to include the evanescent
waves in the random sum. This immediately runs into trouble: without any specified boundary
condition, runaway (exponentially large) solutions abound. Essentially there is no metric.
Furthermore, the idea that the wave amplitude emanates from the classically allowed (albeit
chaotic) region would be lost in such a random sum of evanescent waves. The conclusion
is that the forbidden regime has to be carefully extended from the allowed region, where
the guiding principle is Berry’s random superposition of travelling waves deep in classically
allowed regions.
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What might we expect to be the behaviour of nodal lines at and beyond the turning point
surface? Certainly the answer to this question has to depend on the nature of the potential.
For a hard-walled billiard, the question is almost moot, but we can expect things to be not
radically different for a steep but finite-sloped wall, which does fall in the class of systems
we wish to study. The persistence of nodal lines (at the usual density for a free particle of
given energy) proximate to a hard wall is well known. The wall, which is itself a nodal
line, necessarily intersects interior nodal lines at right angles (as any nodal lines which meet
must do).

For a potential which remains bounded but increases beyond the classically allowed
region, persistence of any nodes at infinite distances is perhaps surprising. In a sense, a
wavefunction with nodes in the forbidden region is not executing an optimal penetration. T
is very negative deep in the forbidden region. Without loss of generality, suppose x is the
direction of steepest ascent, and there are nodal lines locally at y = const1, const2, . . . . This
implies a locally positive p2

y

/
2 in T = p2

x

/
2 + p2

y

/
2, making p2

x

/
2 more negative, and px

larger imaginary. Then the semiclassical penetration integral which goes like

∼exp

[
−

∫ x

|px(x, y)| dx

]
(2)

is attenuating faster than it would if py = 0. In a kind of survival of the fittest, one might
expect that such waves would perish compared to others which have no nodes to cause more
rapid attenuation.

Against this argument is the notion that the allowed region ‘launches’ waves into the
forbidden zone, and it has no interest so to speak in launching optimal penetrating waves.
Assuming a variety of waves are launched into the forbidden region, the ‘survival of the fittest’
argument suggests that the nodal density will decrease at some rate as we go deeper into the
forbidden region, as the waves with fewer nodes manage to penetrate more easily and start
to dominate. This argument necessitates a region of pinching off of nodal lines, as two lines
from different places on the turning point surface meet.

The guiding principle of our investigation is to follow typical random waves living in the
allowed regions as they make their way into forbidden ones. This is accomplished first with
the model introduced next, in the case of one type of potential energy surface.

2. Random degenerate harmonic oscillator model

We introduce a very useful generalization of the plane wave superposition which immediately
accomplishes the goal of a logical continuation of Berry’s guiding idea into the turning point
regime and beyond.

Let the kinetic energy be as above, and the potential energy be V (x, y) = x2 + y2. The
nth level will be (n + 1)-fold degenerate, spanned by ψn,k(x, y) = 1√

k!(n−k)!Hk(x)Hn−k(y) for
k = 0, . . . , n. Here, we disregard the exponential part of the harmonic oscillator wavefunction
because it does not affect where the nodes are. If n is large, we have a large number of
waves ψn,k(x, y), k = 0, . . . , n, and we can superpose with random coefficients to make a
random degenerate harmonic oscillator eigenfunction: ψ = ∑n

k=0 akψn,k, where the ak are
independent identically distributed Gaussian random variables. We stress that the resulting
wavefunctions are eigenstates, and are locally random superpositions of plane waves deep in
the allowed regions of the potential.

The nodal structure of such a typical wavefunction for n = 30 is shown in figure 1. Note
that the wavefunction is symmetric under rotation by 180◦. As illustrated in figure 1, the
plane is divided generically into three regions: an allowed region where the wavefunction
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Figure 1. Random combination of degenerate two-dimensional harmonic oscillator wavefunctions
with n = 30. White stands for ψ > 0 and black for ψ < 0. The x- and y-axes run from −20 to 20.

is oscillatory, an intermediate region where some nodal lines pinch off, and a forbidden
region where a finite number of radial nodal lines tends to infinity. The number of nodal
lines persisting to infinity can be deduced by going to polar coordinates (x, y) → (r, θ),
and expanding the Hermite function Hk(r cos θ)Hn−k(r sin θ), keeping the terms of largest
order in r, namely rn. These will dominate the random sum as r → ∞. Thus the nodes
are determined by the zeros, as a function of θ , of the leading term of order rn, which is
ψ = rn

∑n
k=0 akckcn−k(cos θ)k(sin θ)n−k , where ck = 1/

√
2kk!.

A major result for this model is that the number of angular nodes persisting to infinity scales
as n1/2. This can be seen by the following argument. Let fk(θ) = ck cn−k(cos θ)k(sin θ)n−k.
This function has four maxima in the interval 0 < θ < 2π , separated on average by π/2
radians; the width of the peaks goes as n−1/2. Now in the correlation function

〈ψ(θ)ψ(θ +�θ)〉 =
n∑
k=0

〈
a2
k

〉
fk(θ)fk(θ +�θ) (3)

we need �θ ∼ n−1/2 for fk to decorrelate from itself, independent of k; thus, the first zero is
expected at a distance�θ ∼ n−1/2 and so the density of zeros (or number of radial lines) must
scale as n1/2. The transition from the regime of radial lines to the pinching-off regime occurs
when the subleading term (O(rn−1)) becomes large enough to compete with the leading term
(O(rn)). The former has twice as many terms as the latter, so, assuming random coefficients,
we expect the transition to take place around

√
2 times the radius of the turning point. This

defines the pinching region. The number of nodes per unit length on a circle of radius r clearly
decreases from its value at the turning point as one enters the pinching region and falls as 1/r
for large r. We now seek to study these phenomena for a general two-dimensional potential.

3. Analysis of nodes near the turning point

The number of nodes in an arbitrary two-dimensional potential which is always increasing
as one moves away from the origin can be determined up to a numerical coefficient by
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Figure 2. Random combination of Airy functions in x times cosine waves in y. White stands for
ψ > 0 and black for ψ < 0. The x- and y-axes run from −25 to 25.

dimensional analysis. We consider an eigenfunction with energy E in a two-dimensional
potential V (x, y). In the semiclassical limit we can approximate the potential near the turning
point by a linear-ramp potential; without loss of generality, we can write V (x, y) = Cx where
the equipotential of energy E is the line (x = 0, y).

Thus, near the turning point in the semiclassical limit, the Schrödinger equation separates
and the eigenfunction may be written as a superposition of terms of the form

ψk(x, y) = Ai
((
C1/3

/
h̄2/3

)
(x + h̄2k2/C)

)
cos(ky + δk) (4)

where k is the wavevector in the transverse (y) direction and δk is a k-dependent phase shift.
An example of such a superposition is shown in figure 2. The spacing between nodes in the
x-direction is determined by the distance over which the argument of the Airy function changes
by an amount of order unity: �x ≈ h̄2/3

/
C1/3. We now argue that the spacing of the nodes

in the transverse direction is of the same order of magnitude: �y ≈ �x. The reason for this
is basically dimensional analysis; there is no other length scale in the problem, so we cannot
expect the transverse oscillations to differ systematically in magnitude from the oscillations
in the x-direction. In our problem we can neglect scarring because the fraction of phase space
affected by scars on the short periodic orbits vanishes in the semiclassical limit. Therefore,
we find that the density of nodes along the equipotential surface V (x, y) = E is given by
1/�y, or

#(nodes)

unit length
∝ h̄−2/3|gradV |1/3. (5)

This result is valid only within the limits of the semiclassical analysis. The linearizable region
around the turning point must be large enough to cover many wavelengths. For a given
potential with a finite slope C this will be true for sufficiently small h̄. We cannot investigate
potentials for which the slope at the turning point is infinite nor can we take the limit as the
slope C tends to infinity for fixed h̄ (as one might want to do for approximating a hard-wall
potential).



5678 W E Bies and E J Heller

In order to determine the numerical coefficient in the estimate of the nodal density, we
consider the two-point correlation function near the turning point. An arbitrary wavefunction
of energy E = 0 will be represented by ψ = ∫

dk a(k)ψk, where a(k) are independent
Gaussian random variables. We assume that every ψk is derived from a random superposition
of plane waves (with random phase shifts) far into the allowed region which is then extrapolated
to x near the turning point

(
i.e. |x|/(h̄2/3

/
C1/3

) = O(1)
)

using the Airy function. This has
the consequence that at x = 0 any ψk with k > 0 will be exponentially suppressed for large k
due to the fact that the Airy function in equation (4) is in the evanescent region at x = 0 for
any k > 0. The two-point correlation function is then given by

C(x, y; x ′, y ′) = 〈ψ(x, y)ψ̄(x ′, y ′)〉 (6)

=
∫

dk cos k(y − y ′) (7)

× Ai

(
C1/3

h̄2/3 (x + h̄2k2/C)

)
(8)

× Ai

(
C1/3

h̄2/3 (x
′ + h̄2k2/C)

)
. (9)

The two-point correlation function C(0, 0; 0, y) as a function of y is oscillatory and damped,
similar to the Bessel function which is valid in the allowed region but with a more rapid
decay at large y. From its first zero we infer a nodal density of 0.19 on the line x = 0, in
comparison with the numerical value of 0.16, which was obtained by counting the zeros of an
ensemble of wavefunctions with random coefficients of the ψk in equation (4). This number
is the numerical coefficient in equation (5). Away from the turning point in the allowed
region, the Airy function in ψk is approximately sinusoidal near a given point, with a definite
phase depending on k. Thus, ψk looks locally like a combination of plane waves. For x far
into the allowed region (i.e. |x| not small compared to the radius of curvature of the V = 0
equipotential at (x, y) = (0, 0)) the separability assumption underlying equation (4) breaks
down for a general potential. Then plane waves with arbitrary phases, not just those contained
in equation (4), will be present and the Bessel function correlation J0(kr) of [9] is recovered.

Berry found the exact value of the nodal density at the turning point to be 0.170 99 (see
the appendix).

4. Analysis of nodes in the forbidden region

We now study the pinching of nodes in the forbidden region, first for the linear-ramp potential.
Let Px(k) denote the distribution of transverse momenta at x > 0. The idea is that the higher-
frequency components in ψ die off more rapidly than the lower-frequency ones, leading to a
compression of the support of Px(k), hence smaller 〈k〉x = ∫

kPx(k) dk and hence a larger
nodal spacing as x increases. We employ the asymptotic expansion of the Airy function for
large x:

Px(k) =
〈∣∣∣∣

∫
dy e−ikyψ(x, y)

∣∣∣∣
2
〉

(10)

= Ai

(
C1/3

h̄2/3 (x + h̄2k2/C)

)2

(11)
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≈ 1

4

1

| (C1/3/h̄2/3
)
(x + h̄2k2/C)|1/2 exp

(
−4

3

C1/2

h̄
|x + h̄2k2/C|3/2

)
(12)

≈ (const) e−(k/kx )2 (13)

where we expand the argument of the exponential yielding |x|3/2 + 3
2x

1/2h̄2k2/C and then
we set kx =C1/4/21/2h̄1/2x1/4. The denominator in equation (12) can be treated as nearly
independent of k for sufficiently large x, since the whole expression is exponentially suppressed
for k � kx but h̄2k2/C � x. In the last line the factor kx just rescales the k-distribution by
an amount depending on x. In the same approximation the wavefunction is given up to a
constant by

ψ(x, y) =
∫

dk a(k) e−k2/2k2
x cos(ky + δk) (14)

=
∫

dk′a(kxk′) e−k′2/2 cos(k′y ′ + δkxk′) (15)

=
∫

dk′a(k′) e−k′2/2 cos(k′y ′ + δk′) (16)

with k′ = k/kx and y ′ = kxy. The equality between the second and third lines holds
in a statistical sense, which is all we are concerned with here; since the a and δ are
independent identically distributed random variables, relabelling them does not affect the
statistical properties of ψ(x, y). Then from equation (16) we see that ψ(x1, y) and ψ(x2, y)

have the same form up to a rescaling in the y-direction. Apart from the linear rescaling of y by
the factor kx, the number of zeros in the y-direction at fixed x depends only on the x-independent
form of ψ(x, y) in equation (16). Therefore, the nodal density must scale as x−1/4 for
large x. This analytical result is in agreement to within 2% with numerical results for random
wavefunctions of the type given in equation (4). It is also in agreement with the expression
given above for the two-point correlation function in the forbidden region; i.e. the first zero
y(x) ofC(x, 0; x, y) as a function of x > 0 scales as x1/4 for large x. The most direct evidence
confirming the x−1/4-dependence of the nodal density was obtained by solving for high-lying
eigenfunctions in an ensemble of chaotic two-dimensional Hamiltonians and counting the
average number of zeros on energy equipotentials of increasing radius. The potential used was
of the form V (x, y) = x2 + y2 + λx2y2 with λ = 0.1 plus a number of Gaussian bumps with
random heights and positions in the classically allowed region. Numerically we were able to
generate eigenfunctions that had five to six wavelengths across the classically allowed region,
far enough into the semiclassical regime that the x−1/4-dependence should be expected. As
shown in figure 3, the numerical results for the nodal density are approximately given by an
x−1/4 law for radii greater than 6 (the numerical exponent is close to −0.30). The derivation
of the x−1/4-dependence breaks down near the turning point at radius 5.5. Near the turning
point, the nodal density approaches a constant value of 0.37, which is to be compared with the
prediction of equation (5) using the numerical value of the constant of proportionality, namely
0.16. Equation (5) yields a predicted nodal density at the turning point of 0.40. The slight
discrepancy with the computed value is probably due to the fact that the radius of curvature
of the equipotential at the turning point was not large compared to the nodal spacing, as was
assumed in the semiclassical derivation. According to Berry (see the appendix), the nodal
density tends to 1/2πx1/4 for sufficiently large x. At radius 6.5, corresponding to x = 1,
the nodal density is about twice what the asymptotic formula predicts. The faster fall off in
figure 3 with an exponent of −0.30, slightly greater than −0.25, presumably continues until
the asymptotic form is reached. At radii larger than the upper end of the range plotted in
figure 3 the nodal density cannot be computed due to numerical noise.
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Figure 3. Nodal density for chaotic eigenfunctions near energy E = 15.25 (the 100th state from
the bottom of the well) arising from a potential consisting of V (x, y) = x2 + y2 + λx2y2 plus
random Gaussians in the allowed region, with λ = 0.1, plotted versus radius (distance along the
x-axis from the origin to the equipotential V = E). Crosses indicate numerical results and the
dashed line the theoretically predicted x−1/4 fall off.

Very recently, Berry was able to verify the asymptotic x−1/4-dependence by deriving an
analytic expression for the nodal density that reduces to an x−1/4-dependence far into the
forbidden region (see the appendix).

We can generalize this result to potentials with non-linear x-dependence but no
y-dependence, i.e. V (x, y) = V (x). Then the semiclassical propagator implies that ψk
decays in the forbidden region as follows:

ψk =
∣∣∣∣∂2S(x,E)

∂x∂E

∣∣∣∣
1/2

e−|S(x,E)/h̄| (17)

with E = −k2 (so that the total energy is zero) and S(x,E) the action of the path with
energy E that goes from the turning point along the x-axis to the point (x, 0). The prefactor
is given by (

√
V (x) + k2)−1/4 while the argument of the exponential is

∫ x
0 dx

√
V (x) + k2.

The k-dependence of the change in the argument of the exponential with x is given by√
V (x) + k2 − √

V (x) which to leading order for large x is just k2/2
√
V (x). Thus as before

the distribution in k becomes narrower as one goes farther into the forbidden region. The width

in k scales as 1/
√∫ x dx/

√
V (x). Interestingly, this implies that the distribution in k becomes

stationary in x for large x if the potential grows rapidly enough; i.e. V (x) = (const)xα with
α > 2. An intuitive physical explanation of this result would be helpful, but we have not found
one so far. This analysis fails for any realistic potential with finite radius of curvature of the
equipotential through the turning point. The typical wavevector at the turning point scales as
h̄−2/3; in the semiclassical limit the distance one has to go into the forbidden region for k2 �
V (x) tends to infinity and the assumption that the potential is independent of y breaks down.

5. Transition to semiclassical behaviour in the allowed region

Far into the classically allowed region the wavefunction near (x0, 0) may be written as a
random sum of plane waves:
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ψ(x, y) =
∫

dθaθ exp(−i(k0(cos θ, sin θ) · (x − x0) + δθ )) (18)

where k0 = (1/h̄)
√
E − V (x0, 0) and aθ are independent identically distributed Gaussian

random variables; i.e. 〈aθaθ ′ 〉 = δ(θ − θ ′). The phase shifts δθ are also assumed independent
and uniformly distributed on the interval [0, 2π]. We call this the circular distribution. In
order to compare with the behaviour of the wavefunction for x0 < x < 0 we compute the
normalized probability distribution for the transverse momentum:

Px0(ky) =
〈∣∣∣∣

∫
dy e−ikyyψ(x0, y)

∣∣∣∣
2
〉
. (19)

Substituting from equation (18) we have

Px0(ky) =
〈∫

dy dy ′ dθ dθ ′aθaθ ′ exp(i(kyy − kyy ′ − kθ · (x0, y) + kθ ′ · (x0, y
′) + δθ − δθ ′))

〉
.

(20)

The ensemble average over the phase shifts yields a δ(θ − θ ′). Then the ensemble average
over the aθ reduces to

〈
a2
θ

〉 = 1. The integrand in equation (20) becomes

Px0(ky) =
∫

dy dy ′ dθ ei(ky−k0 sin θ)(y−y′) (21)

=
∫

dθδ(ky − k0 sin θ) (22)

= (2/π)√
k2

0 − k2
y

	(ky − k0). (23)

In the last step we have normalized such that
∫ ∞

0 dkyPx0(ky) = 1. Near the turning point,

however, we saw above that P0(ky) = Ai
(
h̄4/3k2

y

/
C2/3

)2
. Clearly there must be a transition

region between this result for x = 0 and the circular distribution (equation (23)) forx = x0 < 0
far enough into the allowed region for the semiclassical limit to apply. In the limit as h̄ tends
to zero for a given potential V (x, y) the semiclassical limit will be attained for x0 < 0 still
lying in the linearizable region of the potential around the turning point; therefore, we can
restrict our attention to the case V (x, y) = Cx. For simplicity, let us adopt units such that
h̄ = C = 1.

The presence of the classical turning point modifies the form of the plane waves that are
allowed in the region near it. For the case of a hard-walled billiard, this issue has been the
subject of a recent investigation by Berry [12]. If, for example, there were a hard wall at
x = 0, one would have to exclude plane waves that did not vanish at x = 0. This can be done
by subtracting the reflected wave from the incident wave. The most general allowed plane
waves in the case of a hard wall are thus of the form e−ikyy+iδ sin kxx with k2

x + k2
y = k2. In

a billiard with an irregularly shaped boundary this ensemble of plane waves will go over to
the circular ensemble when the distance to the wall is not small compared to the radius of
curvature of the boundary. Similarly in the case of a ramp potential the most general plane
wave near the turning point is of the form

e−ikyy+iδ sin
(
kxx + δx,ky

)
(24)

where k2
x + k2

y = k2 = |x| and δx,ky is a phase shift that ensures that the sine wave is in
phase with Ai

(
x + k2

y

)
at the point (x, 0). The exclusion of all other plane waves can be

understood from the following argument. A sine wave with arbitrary phase at a given point
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x < 0 can be represented locally as a combination of the Airy function Ai
(
x + k2

y

)
and the

complementary Airy function Ai′
(
x +k2

y

)
. These can now be extrapolated to x near the turning

point. However, the complementary Airy function diverges when its argument is greater than
zero, i.e. for x > −k2

y . Therefore we must impose the physical requirement that the coefficient
of the complementary Airy function be zero, and this is done by choosing the phase δx,ky so
that the sine wave is in phase with the Airy function.

We start with a wavefunction which is a random superposition of plane waves of the form
given in equation (24):

ψ(x, y) =
∫

dθaθ e−ik0 sin θy+δθ sin
(
k0 cos θx + δx,k0 sin θ

)
(25)

and then match the sine waves in x to Airy functions which have the same rate of oscillation
near x = x0. The matching is given by

e−ikyy+iδ sin
(
kxx + δx,ky

) ≈ Ai
(
x + k2

y

)
Ae

(
x0 + k2

y

) e−ikyy+iδ (26)

near x = x0, with ky = k0 sin θ . We have introduced the Airy envelope function, denoted
by Ae. For x < xmax it is given approximately by 1/

√
π |x|1/4, xmax = −1.0188 being the

position of the first maximum of the Airy function for x < 0, and for x > xmax, where the
Airy function is no longer oscillatory, we set Ae(x) = Ai(x). Thus, ψ(x, y) is known in
the region x0 < x < 0 by substitution of equation (26) into equation (25). Now ψ(x, y) can
be extrapolated from x = x0 to a point closer to the turning point x = x1 with x0 < x1 < 0. If
we assume |x1| � |x0| the Airy envelope function in the denominator becomes approximately
constant for k < |x1|1/2; the Airy function in the numerator is exponentially damped for
k > |x1|1/2. The wavefunction, equation (25), can be written with the aid of the matching
formula, equation (26), as follows:

ψ(x, y) ≈
∫

dθaθ
Ai

(
x + k2

θy

)
Ae

(
x0 + kθy2

) e−ikθyy+iδθ . (27)

The distribution at x0 can be extrapolated to the distribution at x1 < 0 with |x1| � |x0| by
means of equation (27):

Px1(ky) =
〈∣∣∣∣

∫
dy e−ikyyψ(x1, y)

∣∣∣∣
2
〉

(28)

=
〈∫

dy dy ′ dθ dθ ′aθaθ ′
Ai

(
x1 + k2

θy

)
Ai

(
x1 + k2

θ ′y
)

Ae
(
x0 + k2

θy

)
Ae

(
x0 + k2

θ ′y

) (29)

× exp(i(ky(y − y ′)− kθyy + kθ ′yy
′ + δθ − δθ ′))

〉
. (30)

Again the ensemble average over the phase shifts yields a δ(θ − θ ′). Then the ensemble
average over the aθ reduces to

〈
a2
θ

〉 = 1. We are left with

Px1(ky) =
∫

dy dy ′ dθ
Ai

(
x1 + k2

θy

)2

Ae
(
x0 + k2

θy

)2 ei(ky−kθy )(y−y′) (31)

=
∫

dθ
Ai

(
x1 + k2

θy

)2

Ae
(
x0 + k2

θy

)2 δ
(
ky − kθy

)
(32)
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=

 1√

k2
0 − k2

y Ae
(
x0 + k2

y

)2


 Ai

(
x1 + k2

y

)2
. (33)

The prefactor is approximately 1 for |x1| � |x0|. This leaves

Px1(ky) = (const)Ai
(
x1 + k2

y

)2
(34)

where the x1-dependent constant is chosen such that
∫ ∞

0 Px1(ky) dky = 1. This analytical form
has the right limiting behaviour; for x1 = 0 it reduces trivially to the P0(ky) obtained above
and for large |x1| we see that equation (23) is recovered upon insertion of the asymptotic form
of the Airy function. Here, one must average over the rapid oscillations of the Airy function.
The oscillations in the momentum distribution Ai

(
x1 + k2

y

)2
are due to the fact that the Airy

functions Ai
(
x + k2

y

)
in equation (4) have zeros in the allowed region. At the positions of the

zeros, there can be no waves with transverse momentum ky . If one goes far enough into the
allowed region the circular distribution will be recovered, but for sufficiently small h̄ there will
always be a region near the turning point where equation (34) holds. In figure 4 we show how
equation (34) explains the transition from the circular distribution far into the allowed region
to the Airy function distribution near the turning point. Because the envelope of the Airy
function falls rather slowly

(∼|x1|−1/4
)

one has to go to rather large |x1| ∼ 100 before Px1(ky)

begins to acquire the sharp peak at ky = |x1|1/2 characteristic of the circular distribution. For
intermediate x1 the peak is rounded. Finally, we may change units and express Px1(ky) as

Ai
((
C1/3

/
h̄2/3

)(
x1 + h̄2k2

y

/
C

))2
. This shows that the transition region becomes much larger

for smaller slopes of the potential at the turning point. To our knowledge, the analytical
form (34) expressing the correction to random matrix theory in chaotic wavefunctions near
the classical turning point has not been given before in the literature. Our result is important
for the numerical calculation of eigenfunctions in smooth potentials. It is doubtful whether
one could ever get beyond the transition region, since it is so large in terms of number of
wavelengths from the turning point.

6. Discussion

In the process of finding the correct nodal density and correlation functions at turning points
and beyond, we have found corrections to Berry’s conjecture in the classically allowed region
as well. These corrections actually persist rather deep into the allowed region for reasonable
values of h̄, so that most problems with smooth potentials will nowhere exist in regimes where
the corrections can be entirely ignored. Equation (34) shows the transition from the Airy
function distribution near the turning point to Berry’s circular distribution as one goes far
enough into the classically allowed region.

For distances into the forbidden region on the order of h̄2/3 we may represent the
wavefunction as a superposition of Airy functions and obtain results on the nodal density
at the turning point, and on the rate at which the nodal density falls off as one goes into
the forbidden region. These will apply so long as the distance into the forbidden region is
small compared to the radius of curvature of the energy equipotential at the turning point; this
supplies an h̄-independent criterion for the breakdown of our results.

It would be desirable to understand how the nodal density behaves at radii large compared
to the radius of curvature, but we have not made any progress in this since the separability
assumption does not hold in this region.
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Figure 4. Distribution of transverse momenta, Px(ky) (equation (34)), in a chaotic wavefunction
near the turning point at x = 0 (in dimensionless units), solid lines, and the circular distribution
(equation (23)), dashed lines. (a) x = −1, (b) x = −10, (c) x = −30. At the turning point the
two differ greatly, but as |x| increases the distribution Px(ky) begins to turn over and by x = −30
the envelope of the circular distribution is almost regained.

If the large-radius region could be understood, we would have in principle a complete
picture of the statistical properties of generic chaotic wavefunctions (i.e. neglecting scarring)
for two-dimensional smooth potentials in the semiclassical limit.

It would also be of interest to investigate nodal-line crossings and modifications of the
generic pattern due to scars.
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Appendix

In recent work Berry has verified our finding and derived a remarkable analytical expression
for the nodal density in the case of a linear-ramp potential, which he has kindly communicated
to us [13]. In coordinates (X, Y ) such that the turning point is the line Y = 0, the nodal
density ρL(Y ) is given by

ρL(Y ) = Dx

(
BDy −K2

)
π

∫ π/2

0

dθ(
BDx cos2 θ +

(
BDy −K2

)
sin2 θ

)3/2 (35)

where

B(Y ) = 2
∫ ∞

0
dQAi(Y +Q2)2 (36)

Dx(Y ) = 2
∫ ∞

0
dQQ2Ai(Y +Q2)2 (37)

Dy(Y ) = 2
∫ ∞

0
dQAi′(Y +Q2)2 (38)

and

K(Y ) = 2
∫ ∞

0
dQAi(Y +Q2)Ai′(Y +Q2). (39)

This has the asymptotic forms

ρL(Y ) =



√|Y |/2√
2 Y � 0

0.170 99 Y = 0
1/2πY 1/4 Y � 0

(40)

which agree with our predictions for Y = 0 and Y � 0.

References

[1] Heller E J 1984 Phys. Rev. Lett. 53 1515
[2] Schnirelman A I 1974 Usp. Mat. Nauk 29 181 (in Russian)

Zelditch S 1987 Duke Math. J. 55 919
Colin de Verdiere Y 1985 Commun. Math. Phys. 102 497
Voros A 1979 Springer Lecture Notes in Physics vol 93 ed G Casati and J Ford (New York: Springer) pp 326–33

[3] Berry M V 1991 Some quantum-to-classical asymptotics Les Houches Lecture Series LII (1989)
ed M-J Giannoni, A Voros and J Zinn-Justin (Amsterdam: North-Holland) pp 251–304

[4] Creagh S C and Whelan N D 1999 Ann. Phys., NY 272 196
[5] Bies W E, Kaplan L and Heller E J 2001 Phys. Rev. E 64 016204
[6] Mirlin A 2000 Phys. Rep. 326 259
[7] Bogomolny E and Schmit C 2002 Phys. Rev. Lett. 88 114102
[8] Berry M V 1983 Chaotic Behaviour of Deterministic Systems ed G Iooss, R Helleman and R Stora (Amsterdam:

North-Holland) p 171
[9] Berry M V 1983 Ann. NY Acad. Sci. 357 183

[10] Berry M V 1977 J. Phys. A: Math. Gen. 10 2083
[11] Berry M V 1994 J. Phys. A: Math. Gen. 27 L391–8
[12] Berry M V 2002 J. Phys. A: Math. Gen. 35 3025
[13] Berry M V 2002 Private communication


